

Series PCEC Elevator Softstarters Elevator Panel Solution

Important User Information

Because of the variety of uses for the products described in this publication, those responsible for the application and use of this control equipment must satisfy themselves that all necessary steps have been taken to assure that each application and use meets all performance and safety requirements, including any applicable laws, regulations, codes and standards.

The illustrations, charts, sample programs and layout examples shown in this guide are intended solely for purposes of example. Since there are many variables and requirements associated with any particular installation, Sprecher and Schuh does not assume responsibility or liability (to include intellectual property liability) for actual use based upon the examples shown in this publication.

Rockwell Automation publication SGI-1.1, *Safety Guidelines for the Application, Installation and Maintenance of Solid-State Control* (available from your local Sprecher + Schuh office), describes some important differences between solid-state equipment and electromechanical devices that should be taken into consideration when applying products such as those described in this publication.

Reproduction of the contents of this copyrighted publication, in whole or part, without written permission of Rockwell Automation, is prohibited.

Throughout this manual we use notes to make you aware of safety considerations:

WARNING: Identifies information about practices or circumstances that can cause an explosion in a hazardous environment, which may lead to personal injury or death, property damage, or economic loss.

ATTENTION: Identifies information about practices or circumstances that can lead to personal injury or death, property damage, or economic loss. Attentions help you identify a hazard, avoid a hazard, and recognize the consequence

SHOCK HAZARD: Labels may be on or inside the equipment, for example, a drive or motor, to alert people that dangerous voltage may be present.

BURN HAZARD: Labels may be on or inside the equipment, for example, a drive or motor, to alert people that surfaces may reach dangerous temperatures.

IMPORTANT

Identifies information that is critical for successful application and understanding of the product.

European Communities (EC) Directive Compliance

If this product has the CE mark it is approved for installation within the European Union and EEA regions. It has been designed and tested to meet the following directives.

EMC Directive

This product is tested to meet the Council Directive 89/336/EC Electromagnetic Compatibility (EMC) by applying the following standards, in whole or in part, documented in a technical construction file:

EN 60947-4-2 EMC — Product Standard

This product is intended for use in an industrial environment.

Low Voltage Directive

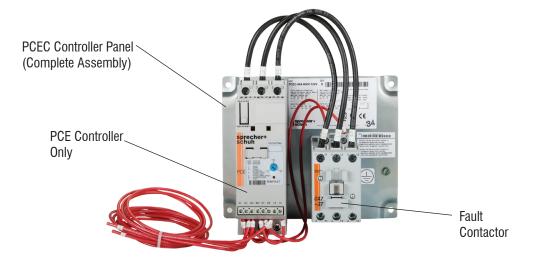
This product is tested to meet Council Directive 73/23/EEC Low Voltage.

This equipment is classified as open equipment and must be mounted in an enclosure during operation to provide safety protection.

UL/CSA Elevator Ratings

The PCEC Softstarters are UL Listed and cUL Listed (Canadian Standards per UL 508 and CS C22.2 No. 14-95) as solid state motor controllers in File E96956. They are also UL Listed and cUL Listed per UL 508 and CAN/CSA B44.1-96 as elevator controllers in File E3125.

Chapter 1:	Introduction	1-1
Introduction	Components Overview	1-2
	Function Overview	1-3
	Starter Selection	1-4
Chapter 2:	Unpacking	2-1
Installation	Mounting	2-1
	Dimensions Drawings	2-1
	Installation Precautions	2-3
	Terminal Torque Specifications	2-4
	DELTA Connection Diagrams, Power, and Motor Wiring	2-5
	LINE Connection Diagrams, Power, and Motor Wiring	2-7
	DELTA Connected Controller - Typical Control Wiring	
	LINE Connected Controller - Typical Control Wiring	2-10
Chapter 3:	Dip Switch Settings	3-1
Programming	Motor FLA Adjustments	
riogramming	Motor Overload Trip Curves	
	Input and Output timing	
		/ -
Chapter 4:	Introduction	
Troubleshooting	Diagnostics Indication	
	Troubleshooting Steps	
	Repair Parts Information	4-4
Chapter 5:	Electrical	5-1
Specifications	Mechanical	5-2
	Environmental	5-2
Index	Motor Current Rating Chart	Index-1


Introduction

This manual provides and overview of the installation, set-up, and typical operation of the Sprecher + Schuh hydraulic elevator and escalator starter. This solid state starter solution is designed to operate 3 phase standard squirrel cage induction motors and can be connected to a 6 or 12 lead Wye-Delta or standard 3 or 9 lead motors. Through the use of LINE or INSIDE-THE-DELTA control, the solid state solution can provide ultimate control of the motor. The advantages of a solid state solution include the following:

- Provides smooth motor starting
- Reduced current surges on weak electrical systems
- Reduced starting torque of the motor helps to reduce mechanical stress on system components
- Helps meet both local and regional electrical codes when reduced voltage starting is a requirement
- The elimination of the voltage and current spikes associated with traditional Wye-Delta starters
- Maximize the life of the motor with reduced electrical strain
- Reduces general system maintenance requirements for improved uptime

Components Overview

The starter is made up of two components, the base controller and a fault contactor.

The base controller is a standard product that uses a number of intelligent features to provide advanced motor control and simple diagnostics. The controller consists of the elements necessary to control the motor, including the main micro processor, current sensing, built in adjustable overload, solid state power modules, and electro-mechanical bypass contacts. Through the use of simple dip switch configuration, the product can be configured for a variety of modes. The default configuration uses the built in current sensing to limit current to the motor during starting. Once up to speed the controller transitions to the run mode by transitioning to internal bypass contactors and changing the state of the aux contact. The internal bypass contactor provides decreased heating during run and removes the SCR's from the circuit

The fault contactor is controlled through the fault contact of the controller. When control power is applied to the controller, the normally open fault contact closes and applies control power to the coil of the contactor. The fault contact will open removing power from the fault contactor, and thus disabling the motor during any one of the following events:

- Power is removed from the controller
- The motor has developed a problem including overloading due to mechanical or electrical reasons, ground faults, or motor short circuits.
- If the starter would detect an internal problem such as a shorted SCR or Overtemp condition

Function Overview

This PCEC elevator panel solution provides both advanced motor control and simple diagnostics. The following information provides a brief overview of the basic product features.

Motor Control

Current Limit Through the use of internal current sensors, the PCEC will regulate

the current level applied to the motor over the programmed period of time. This type of motor control produces a slow start and insures that the current does not exceed the programmed level. This is standard configuration of the device and aligns well with traditional applications.

Soft Start During Soft start, the voltage is ramped from an initial set point to full

voltage over the programmed period of time. This type of motor control produces a smooth start in less time than the current limit setting, however

the current is not restricted.

Soft Stop Soft stop provides the ability to ramp down the voltage applied to the

motor over a programmed period of time. The result is a smooth stop.

Diagnostics

Overload The built in motor overload provides protection of the motor for over

current conditions. This protection feature offers a user selectable setting called the trip class, which can be used to accommodate different applications and motor types. When the motor draws more than the nominal value of current for a period of time, the device will fault on a

motor overload fault.

Over Temperature The product includes a built in self monitoring method for detecting a

SCR over-temperature condition. If the internal temperature exceeds a design threshold the device will fault on a SCR Overtemp fault.

Phase Reversal The user can select the phase relationship of the incoming power. If this

phase relationship changes, the device will fault indicating a problem.

Phase Loss/ When any one of the incoming 3 phases are lost, the controller will fault

Open Load indicating a phase loss condition has occurred.

Phase Imbalance When enabled, this motor protection feature will detect if a phase

imbalance condition exists and fault the unit. A phase imbalance is defined as a 65% differential between the highest and lowest phase for more than

3 seconds.

Shorted SCR Each time the PCEC initiates a start, it checks to see if the SCR's are

operating correctly. If the controller is unable to properly turn on and off any one of the SCR's, the device will fault on a Shorted SCR fault.

Chapter 1:3

Starter Selection

Frame Size 1 - 32...64 Amp

Frame Size 2 - 74...147 Amp

Frame Size 3 - 234 Amp

PCEC Controller Panel - 120V Control Voltage 40

DELTA Connected - 6 Wire ❷ Line Connec									ed - 3 Wire @		With 120VAC 50/60 Hz @@	
IV	Taximum H	lorsepowe	er	Overload	N	laximum l	Horsepow	er	Overload	Frame Size	Control Voltage	
200V	240V	480V	575V	Range 0	200V	240V	480V	575V	Range 0	Fra	Catalog Number	
10	10	20	30	10.932.9	5	5	10	15	6.319	1	PCEC-032-600V-120V	
15	15	30	40	1751	7.5	10	20	25	1030	1	PCEC-051-600V-120V	
20	20	40	60	21.364	10	10	25	30	12.337	1	PCEC-064-600V-120V	
20	25	50	60	24.774	10	15	30	40	14.343	2	PCEC-074-600V-120V	
30	40	75	100	34.7104	15	20	40	50	2060	2	PCEC-104-600V-120V	
40	50	100	150	49147	25	30	60	75	28.385	2	PCEC-147-600V-120V	
75	75	150	200	59234	40	50	100	125	34135	3	PCEC-234-600V-120V @	

PCEC Controller Panel - 230V Control Voltage 49

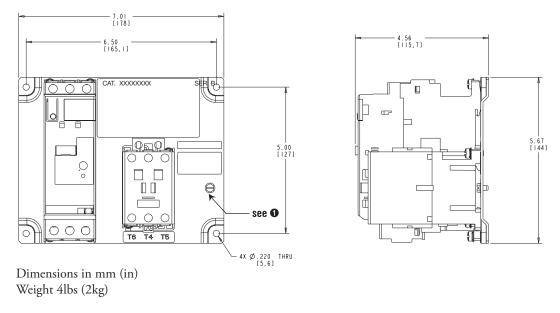
	DELTA (Connect	ed - 6 W	/ire @	Line Connected - 3 Wire ❷					Size	With 230VAC 50/60 Hz ❷❸
IV	Maximum Horsepower			Overload	l N	Maximum Horsepower			Overload	Frame (Control Voltage
200V	240V	480V	575V	Range 0	200V	240V	480V	575V	Range 0	Fra	Catalog Number
10	10	20	30	10.932.9	5	5	10	15	6.319	1	PCEC-032-600V-230V
15	15	30	40	1751	7.5	10	20	25	1030	1	PCEC-051-600V-230V
20	20	40	60	21.364	10	10	25	30	12.337	1	PCEC-064-600V-230V
20	25	50	60	24.774	10	15	30	40	14.343	2	PCEC-074-600V-230V
30	40	75	100	34.7104	15	20	40	50	2060	2	PCEC-104-600V-230V
40	50	100	150	49147	25	30	60	75	28.385	2	PCEC-147-600V-230V
75	75	150	200	59234	40	50	100	125	34135	3	PCEC-234-600V-230V 3

Important Notes

- Motor FLA must fall within the specified range to operate correctly.
- The PCEC Controller panel powerwire jumpers and parameter DIP switch settings are shipped in the DELTA connection mode by default. LINE connection requires the power wires to be reconfigured and DIP Switch #15 to be programmed for LINE connection mode by the customer.
- Internal fan is optional for PCEC-032...064. See Replacement Parts on page 4:4 to purchase separately. All other PCEC units have internal fan as standard.
- Purchase additional PCE Auxiliary Contact Blocks separately. See Section D of currently published catalog. One Auxiliary Contact Block (one or two pole) may be mounted on the right side of the PCE controller.
- Separate 120V or 240V single phase is required for PCEC fan operation.
- The PCEC Hydraulic Elevator duty rating is 80 starts per hour at 50% duty cycle (160 calls per hour). Starts per hour are based on when the motor starts, the motor only runs on "up" calls. Installing an optional fan (PCV-64) is recommended for PCEC-032A...064A for maximum starts per hour performance. All other PCEC units have an internal fan as standard.

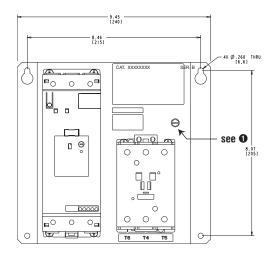
Unpacking

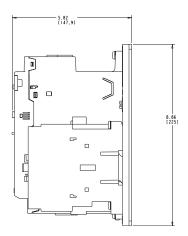
Prior to installation, unpack the starter panel from it's packaging and perform a complete visual inspection of panel. Inspect all components including the controller, wiring, and fault contactor for damage related to shipping and handling. Claims for damage must be made to the carrier as soon as possible after receipt of the shipment.


Mounting

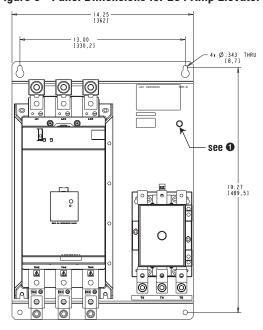
The small footprint of the starter makes it ideal for mounting in the same space previously occupied by legacy solid state starters and traditional Full Voltage starters. The starter panel does not require mounting requirements beyond the basic footprint of the panel.

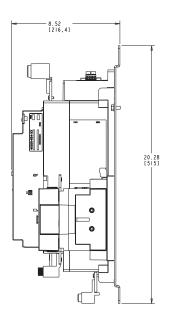
The product incorporates a small cooling fan. There are no additional cooling requirements for the product; however it is good practice to leave at least 6 inches (15.24 cm) of free space above and below the unit for ideal air flow.


Dimensions Drawings


Figure 1 – Panel Dimensions for 32, 51, and 64 Amp Elevator Panels

• This screw is intended for securing: a) a prepared bonding conductor (such as one with crimped-on lug); or b) a suitable terminal for connection of an unprepared bonding conductor (stripped wire end). This screw is not intended for direct field wiring connection of an unprepared conductor or equipment grounding conductor.


Figure 2 – Panel Dimensions for 74, 104, and 147 Amp Elevator Panels



Dimensions in mm (in) Weight 14lbs (6kg)

Figure 3 - Panel Dimensions for 234 Amp Elevator Panels

Dimensions in mm (in) Weight 51lbs (23kg)

This screw is intended for securing: a) a prepared bonding conductor (such as one with crimped-on lug); or b) a suitable terminal for connection of an unprepared bonding conductor (stripped wire end). This screw is not intended for direct field wiring connection of an unprepared conductor or equipment grounding conductor.

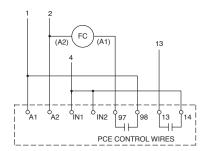
Installation **Precautions**

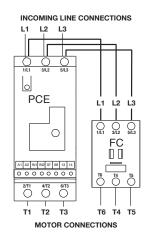
The following installation considerations are provided as guidance for proper installation of this controller. Due to the nature of this product, it may be applied in a variety of applications so not all considerations may be applicable to a particular application. In all cases, the local codes and standards governing this type of product must be observed.

- Motor Branch Protection and Disconnecting Means
 - The controller includes motor overload protection; however it does not have means to protect itself from a short circuit condition. Suitable branch circuit protection and coordination must be provided per the NEC, or the equivalent local electrical code.
- Electrical Noise Suppression
 - Electrical noise can be generated from various sources connected to the same power
 as the controller. Sources of noise include inductive loads (i.e. relays and solenoids),
 large motors and machinery, Variable Frequency Drives, and other high frequency
 devices (i.e. welders)
 - Electrical noise can enter the product through power and control wiring and cause damage to solid state components.
 - Mitigation of electrical noise can be accomplished through the following methods
 - Proper wiring practices including grounding, use of shielded cable were appropriate, and separation of power, control, and signaling wires
 - Use of surge suppression devices on inductive loads
 - Use of isolation transformers for high frequency generators
- Power Factor Correction Capacitors (PFCC)
 - ◆ Power Factor correction capacitors must always be used line side of the controller. Use of PFCC's on the output side of the controller will damage the starter.

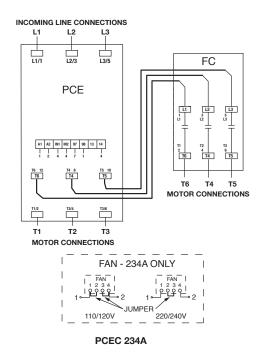
Terminal Torque Specifications

Table 3 - PCE Controller Information

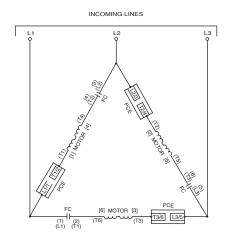

Controller Size	Units	Line Power Terminals	Load Power Terminals	Control Power Terminals
20/51/64	Wire	14 - 4 AWG	14 - 6 AWG	24 - 14 AWG
	Size	(2.5 - 25 mm ²)	(2.5 - 16 mm ²)	(0.2 - 2.5 mm ²)
32/51/64 Torque		20 - 25 lb-in.	20 - 22.5 lb-in.	4.4 - 8 lb-in.
		(2.3 - 2.8 Nm)	(2.3 - 2.6 Nm)	(0.5 - 0.9 Nm)
74/104/147	Wire	14 - 3/0 AWG	14 - 1 AWG	24 - 14 AWG
	Size	(2.5 - 95 mm ²)	(2.5 - 50 mm ²)	(0.2 - 2.5 mm ²)
74/104/147 Torque	Torque	100 - 110 lb-in. (11.3 - 12.4 Nm)	100 - 110 lb-in. (11.3 - 12.4 Nm)	4.4 - 8 lb-in. (0.5 - 0.9 Nm)
234	Wire	6 - 250 AWG	6 - 250 AWG	24 - 14 AWG
	Size	(16 - 120 mm ²)	(16 - 120 mm ²)	(0.2 - 2.5 mm ²)
234	Torque	275 lb-in. (31 Nm)	275 lb-in. (31 Nm)	4.4 - 8 lb-in. (0.5 - 0.9 Nm)

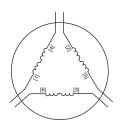

Table 4 - Fault Contactor Information

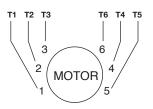
Controller Size	Units	Line Power Terminals	Load Power Terminals	Control Power Terminals
20/51/64/74	Wire Size	14 - 6 AWG (2.5 - 16 mm ²)	14 - 6 AWG (2.5 - 16 mm ²)	16 - 12 AWG (1.4 - 6 mm ²)
32/51/64/74	Torque	13 - 31 lb. in. (2.5 - 4 Nm)	13 - 31 lb. in. (2.5 - 4 Nm)	8.9 - 13 lb. in. (1 - 1.5 Nm)
104/147	Wire Size	14 - 2 AWG (2.5 - 35 mm ²)	14 - 2 AWG (2.5 - 35 mm ²)	16 - 12 AWG (1.4 - 6 mm ²)
	Torque	31 - 52 lb. in. (3.5 - 6 Nm)	31 - 52 lb. in. (3.5 - 6 Nm)	8.9 - 13 lb. in. (1 - 1.5 Nm)
234	Wire Size	6 - 300 AWG (16 - 150 mm ²)	6 - 300 AWG (16 - 150 mm ²)	2x 1612 AWG (2x 14 mm ²)
234	Torque	300 lb-in. (34 Nm)	300 lb-in. (34 Nm)	8.9 - 10.6 lb-in. (1 - 1.2 Nm)

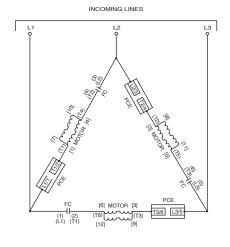

DELTA Connection Diagrams, and Power Wiring

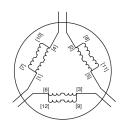
- 1- CONTROL POWER (L)
- 2- CONTROL COMMON (N)
- 4- START ENABLE
- 13- UP TO SPEED INDICATION

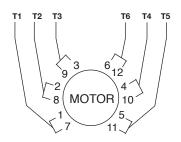


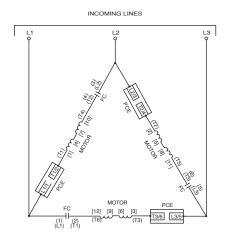



PCEC 32...147A

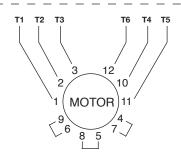

DELTA Connection Motor Wiring



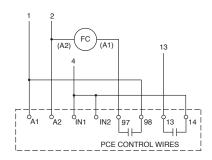


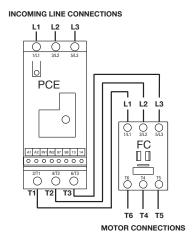

6 LEAD MOT	OR C	ONNE	CTIO	NS			
STARTER TERMINALS	T1	T2	T3	T6	T4	T5	JUMPER
MOTOR TERMINALS	1	2	3	6	4	5	N/A



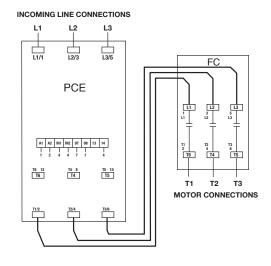


12 LEAD 230V LOW VOLTAGE MOTOR CONNECTIONS							
STARTER TERMINALS	T1	T2	Т3	T6	T4	T5	JUMPER
MOTOR TERMINALS	1&7	2&8	3&9	6&12	4&10	5&11	N/A

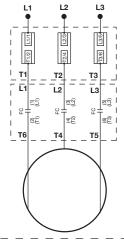


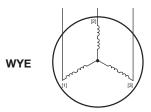

12 LEAD 460	V HIG	H VO	LTAG	E MOT	OR CC	NNEC	TIONS
STARTER TERMINALS	T1	T2	T3	T6	T4	T5	JUMPER
MOTOR TERMINALS	1	2	3	12	10	11	4&7 5&8 6&9

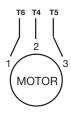
LINE Connection Diagrams, and Power Wiring


• Note: The power wire configuration and dip switch settings must be changed for the line connection method


- CONTROL POWER (L) CONTROL COMMON (N)
- START ENABLE
- 13- UP TO SPEED INDICATION

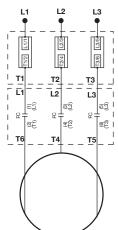

PCEC 32...147A

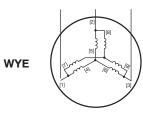


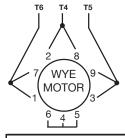


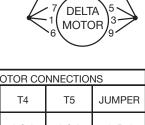
PCEC 234A

LINE Connection Motor Wiring

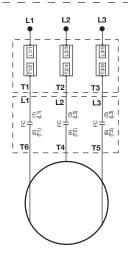


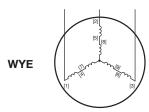


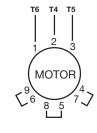



DELTA	/[1]	3]	

3 LEAD MOTOR CONNECTIONS							
STARTER TERMINALS	T6	T4	T5	JUMPER			
WYE & DELTA MOTOR TERMINALS	1	2	3	N/A			

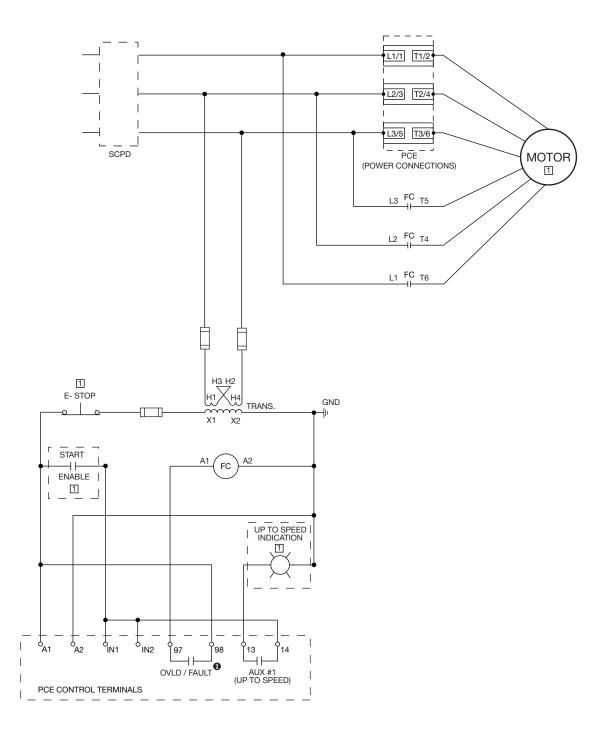




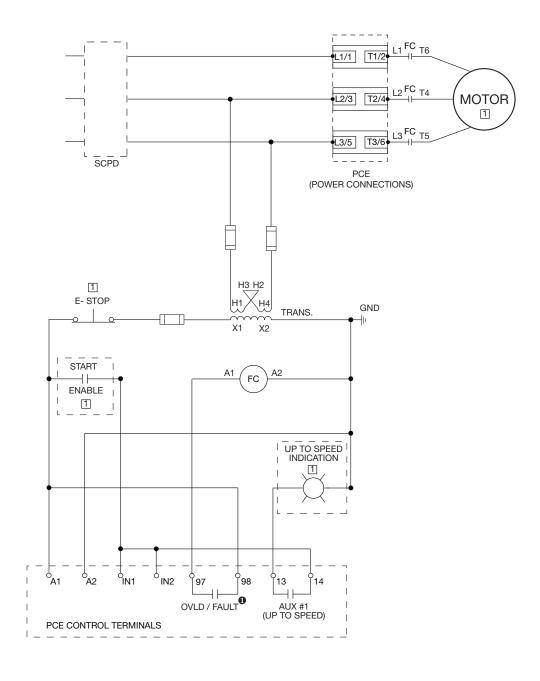


DELTA	$\bigg)$
	′

9 LEAD, 230V LOW VOLTAGE, MOTOR CONNECTIONS								
STARTER TERMINALS	T6	T4	T5	JUMPER				
WYE MOTOR TERMINALS	1 & 7	2 & 8	3 & 9	4, 5, 6				
DELTA MOTOR TERMINALS	1,6,7	2,4,8	3,5,9	N/A				



DELTA	


9 LEAD, 460V HIGH VOLTAGE, MOTOR CONNECTIONS				
STARTER TERMINALS	Т6	T4	T5	JUMPER
WYE & DELTA MOTOR TERMINALS	1	2	3	4 & 7 5 & 8 6 & 9

DELTA Connected Controller - Typical Control Wiring

 When (A1)(A2) control power is applied, (97)(98) contact closes instantaneously and opens when the PCE detects an overload or fault condition, or when control power is removed.

LINE Connected Controller - Typical Control Wiring

 When (A1)(A2) control power is applied, (97)(98) contact closes instantaneously and opens when the PCE detects an overload or fault condition, or when control power is removed.

Dip Switch Settings

The PCE elevator controller is programmed through dipswitches located on the front of the controller. All functionality is defined by these settings. The following tables define the settings available within the PCE controller. **Default settings are indicated by the shaded areas.**

Table 5 - Start Time

Setting (Seconds)	DIP Switch #1	DIP Switch #2	DIP Switch #8
2	OFF	OFF	OFF
5	ON	OFF	OFF
10	OFF	ON	OFF
15	ON	ON	OFF

This defines the time the controller will ramp or limit current to the motor. The controller can determine when the motor is 'up-to-speed', therefore it may transition to bypass before this time expires. If the motor does not reach speed before the time expires, the controller will continue under SCR control and not close the bypass contactor.

Table 6 - Start Mode

Mode Setting	DIP Switch #3	l
Current Limit	OFF	(
Soft Start	ON	ˈ

In Current Limit mode, a set level of current is applied to the motor over the start time. In Soft Start mode, the device will ramp the torque from the initial level to 100% over the start time.

Table 7 - Current Limit / Initial Torque Level

%FLA / % Torque	DIP Switch #4	DIP Switch #5
150% / 15%	OFF	OFF
250% / 25%	ON	OFF
350% / 35%	OFF	ON
450% / 65%	ON	ON

The level indicated by this programming applies an initial level of current or torque to the motor for the start time. For example if switch #3 is set to off, the device will perform a current limit start at the level indicated by these switches.

Table 8 - Soft Stop Time

•		
Setting (Seconds)	DIP Switch #6	DIP Switch #7
OFF	OFF	OFF
1 x Start Time	ON	OFF
2 x Start Time	OFF	ON
3 x Start Time	ON	ON

Soft Stop reduces the voltage applied to the motor over the programmed period of time. The soft stop is complete when the soft stop timer has expired or the current measured drops below 50% of the FLA setting.

Table 9 - Phase Rotation

Setting	DIP Switch #9	
ABC Rotation	OFF	The allowable phase rotation of the motor is defined by this switch.
CBA Rotation	ON	

Table 10 - Phase Imbalance

Setting	DIP Switch #10	The controller has the ability to monitor for imbalance between
Enabled	OFF	phase currents. This protection feature can be user disabled.
Disabled	ON	

Table 11 - Overload Trip Class

Setting	DIP Switch #11	DIP Switch #12
OFF	OFF	OFF
10	ON	OFF
15	OFF	ON
20	ON	ON

The controller incorporates, as standard, electronic overload protection. This motor overload protection is accomplished electronically with the use of internal current transformers on each of the three phases. The controller's overload protection is programmable, providing the user with flexibility.

Table 12 - Overload Reset

Setting	DIP Switch #13
Manual	OFF
Auto	ON

In manual reset mode, the fault can only be reset by pushing the 'push to reset' button on the front of the controller. In auto reset mode, the unit will automatically reset when unit determines the motor has cooled to 75% of its thermal capacity.

Table 13 - Aux#1 Setting

Setting	DIP Switch #14
Normal	OFF
Up-to-Speed	ON

The operation defines the operation of the Auxiliary contacts. Normal mode means that the contact will change state immediately when a start/run command is given. Up-to-Speed mode means that the contact will change state only when the controller is in bypass. Aux#2 when added will operate opposite of this programming.

Table 14 - Motor Connection Type

Setting	DIP Switch #15
Delta	OFF
Line	ON

In DELTA connection mode, the device is designed to control a 6 or 12 lead motor. In LINE connection mode, the device is designed to control a 3 or 9 lead motor.

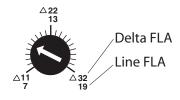
Table 15 - Stop Delay

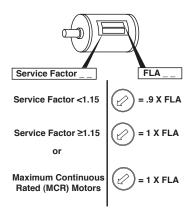
Setting	DIP Switch #16
0.0 Sec	OFF
0.75 Sec	ON

When the delay is programmed, the motor will continue to run for the programmed period of time after the run command is removed from the controller.

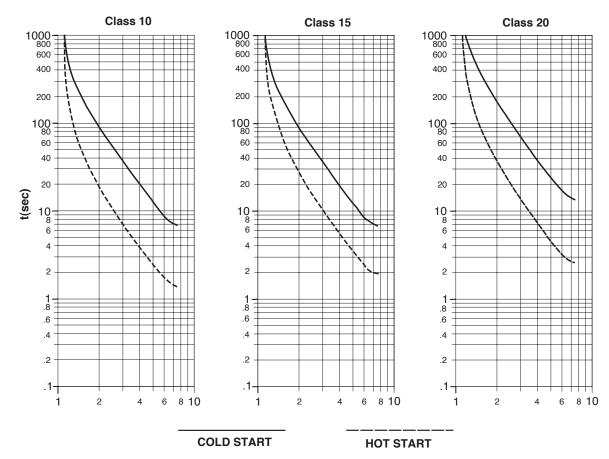
Factory DIP Switch Settings

1	2	3	4	5	6	7	8
ON							
OFF							

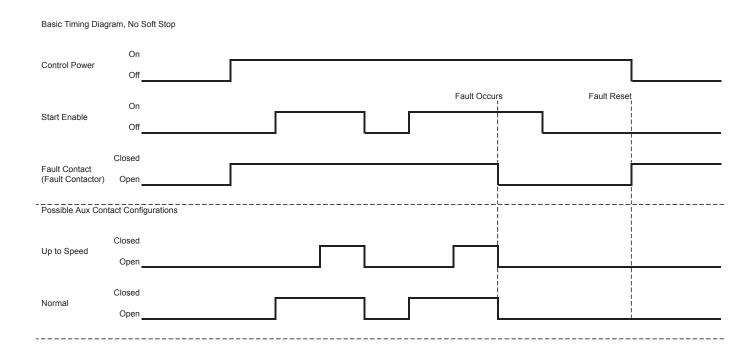

9	10	11	12	13	14	15	16
ON							
OFF							


Motor FLA Adjustments

The front of the PCE controller contains a dial which is used for setting the actual FLA of the motor. The label is designed to accommodate motors connected in the LINE or DELTA mode. To determine the proper setting, look at the motors nameplate and set the dial accordingly. The dial setting can be modified depending on the service factor of the motor as follows:


The trip class should be set according to the motors maximum permissible locked rotor time or the general thermal capabilities. Consult the motor manufacturer for recommendations on setting the trip class.

Input and Output timing



Motor Overload Trip Curves

Chapter 3:3

Input and Output timing

Introduction

The following topics are designed to assist in the troubleshooting and maintenance of the PCEC controller. The items mentioned in this section are not intended to be all inclusive and it is expected that they should be used as reference only.

For safety of maintenance personnel as well as others who might be exposed to electrical hazards associated with maintenance activities, follow the local safety related work practices (for example, the NFPA 70E, Part II in the United States). Maintenance personnel must be trained in the safety practices, procedures, and requirements that pertain to their respective job assignments.

SHOCK HAZARD: Hazardous voltage is present in the motor circuit even when the PCEC Softstarter is off. To avoid shock hazard, disconnect main power before working on the controller, motor, and control devices such as Start-Stop push buttons. Procedures that require parts of the equipment to be energized during troubleshooting, testing, etc., must be performed by properly qualified personnel, using appropriate local safety work practices and precautionary measures.

ATTENTION: Disconnect the controller from the motor before measuring insulation resistance (IR) of the motor windings. Voltages used for insulation resistance testing can cause SCR failure. Do not make any measurements on the controller with an IR tester (megger).

Note: The time it takes for the motor to come up to speed may be more or less than the time programmed, depending on the frictional and inertial characteristics of the connected load.

Diagnostics Indication

The LED on the front of the product provides limited status information regarding the condition of the controller. The conditions are as follows:

- LED Off No control power or start command given
- LED On The device is active with starting, running, or stopping.
- LED Flashes- A fault has been experienced, see table 16 for additional explanation.

Table 16 - Led Fault Indication and Diagnostics

Flashes	Fault Type	Possible Fault Explanations	Possible Solutions
1	Overload	Motor Overload condition present FLA dial adjustment not matched to motor	 Check for motor overload condition Verify actual motor current does not exceed FLA Verify/Reset FLA Dial adjustment Program/modify Overload setting for load or duty cycle required
2	Over Temperature	 Controller ventilation blocked Controller duty cycle exceeded Cooling fan not working Ambient temperature exceeded Failed control module Over-current condition with Overload disabled 	 Check for proper ventilation Verify duty cycle Connect or replace cooling fan Wait for controller to cool or provide external cooling Replace control module
3	Phase Reversal	Incoming supply voltage is not the expected sequence of either ABC or CBA	 Check power wiring Change two of the incoming phases and verify that the motor is spinning in the correct direction. If the motor does not turn in the correct direction, change the incoming phases back to their original connections and change dip switch #9 to the desired Line Rotation sequence setting.
4	Phase Loss/ Open Load	Missing Supply Phase Missing or unable to detect motor connection	 Check for open line (i.e. open fuse) Check for incorrect wiring to load Verify proper operation of the fault contactor Verify connection type to motor (LINE or DELTA) Ensure product is sized correctly for motor
5	Phase Imbalance	 Unbalanced Phase Currents (> 65% differential) Incoming Line voltage problem 	Check motor current in each phase to verify imbalance. Motor current imbalance can indicate potential motor problems
6	Shorted SCR	Shorted SCR Welded or latched Bypass contactor	 Verify connection type (LINE or DELTA) and verify setting Perform continuity check across power poles (L1 – T1, L2 – T2, L3 – T3). Measurements should exceed 10 k ohms. For best results remove line and load motor connections. Cycle power to device and attempt to restart, if fault persists replace device
7	Test	Intended operation	Reset Fault
12	Checksum	Internal Software corruption	Replace Device

Troubleshooting Steps

Table 17 - Troubleshooting Steps

Control	Device Status	Solution
Pre-start - no start command given but device is faulted	LED Flashing	 Reset Fault Allow device to cool (overload or SCR over temp), Reset Fault Cycle power to device
	LED Off	Check Control Power Check control circuit connections
Motor fails to start after start command given	LED ON	 Verify proper operation of fault contactor or isolation devices Check connections to the motor Verify line power and frequency are within specifications
	LED Flashing	Reference Table 16 for information related to specific fault codes
Motor Attempts to start after start command is given but fails to reach an	LED ON	 Verify proper operation of fault contactor or isolation devices Verify line power and frequency are within specifications Try increasing the initial torque or current limit setting
up to speed condition	LED Flashing	Reference Table 16 for information related to specific fault codes
Motor Stops abruptly and	LED Off	 Check for blown fuse or tripped circuit breaker Insure control power and start command are present Verify proper operation of fault contactor or isolation devices
fails to restart	LED ON	Verify proper operation of fault contactor or isolation devices
	LED Flashing	Reference Table 16 for information related to specific fault codes
Fault Contactor Fails to close when power is applied	All Conditions	 Verify wiring to coil (the contactor should close when power is applied to the controller) Verify voltage across coil (A1 to A2) Check resistance of coil, replace if measured open Verify internal contact of controller (terminals 97/98) are properly changing state, replace controller if contact does not operate correctly

Repair Parts Information

Panel	Controller		Contactor	Fans	Contactor Coil
PCEC-032-600V-120V	PCE-03	32-600V	CA7-37-00-120		
PCEC-051-600V-120V	PCE-05	51-600V	CA7-37-00-120	(Optional) PCV-064	TC473
PCEC-064-600V-120V	PCE-06	64-600V	CA7-37-00-120	100-004	
PCEC-074-600V-120V	PCE-07	74-600V	CA7-43-00-120		TD473
PCEC-104-600V-120V	PCE-10	PCE-104-600V		PCV-147	TE473
PCEC-147-600V-120V	PCE-14	17-600V	CA7-85-00-120		TE473
	Complete Device	PCE-234-600V			
PCEC-234-600V-120V	Control Module	PCE-234	CA9-190-11-120W	PCV-234	CA9-TG907
	Power Pole	PFL-0135-600V ①			
PCEC-032-600V-230V	PCE-03	PCE-032-600V			
PCFC-051-600V-230V	PCF-051-600V		CA7-37-00-220W	(Optional)	TC296

PCEC-032-600V-230V	PCE-032-600V		CA7-37-00-220W	(0.111)	
PCEC-051-600V-230V	PCE-051-600V		CA7-37-00-220W	(Optional) PCV-064	TC296
PCEC-064-600V-230V	PCE-064-600V		CA7-37-00-220W	100007	
PCEC-074-600V-230V	PCE-07	4-600V	CA7-43-00-220W		TD296
PCEC-104-600V-230V	PCE-104-600V		CA7-60-00-220W	PCV-147	TE296
PCEC-147-600V-230V	PCE-147-600V		CA7-85-00-220W		TE296
	Complete Device	PCE-234-600V			
PCEC-234-600V-230V	EC-234-600V-230V Control Module	PCE-234	CA9-190-11-120W	PCV-234	CA9-TG907
	Power Pole	PFL-0135-600V ①			

 $[\]ensuremath{\bullet}$ Part number contains three power poles.

Electrical

Power Circuit

	UL/cUL/CSA	IEC
Rated Operational Voltage	200600V AC	200500V~
Rated Insulation Voltage	600V AC	500V~
Dielectric Withstand	2200V AC	2500V~
Repetitive Peak	200600V AC: 1600	500V~: 1600
Rated Impulse Voltage	6	S kV
Over-voltage Category		III
Number of Poles	Equipment desigr	ned for 3 phase only
Operating Frequency	50/	60 Hz
	32/51/64	AC-53b: 3.5-15:3585
Controller Utilization Category	74/104/147	AC-53b: 4.5-30:1770
	234	AC-53b: 3.5-30:1770
Overload Current Range (Amps)	LINE	DELTA
32	6.319	10.932.9
51	1030	17.351.9
64	12.337	2164
74	14.343	2574
104	2060	84.6104
147	28.385	50147
234	34135	59234

Control Circuit

	UL/cUL/CSA	IEC	
Rated Operational Voltage	100120 V AC, 200240V AC	120~, 240~	
Rated Insulation Voltage	NA	300V~	
Dielectric Withstand	NA	3000V	
Rated Impulse Voltage	3kV		
Operating Frequency		50/60 Hz	
	32/52/64	215 mA @ 120 V AC , 180 mA @ 240 V AC	
Control Power Requirements	74/104/147	200 mA @ 120 V AC , 100 mA @ 240 V AC	
	234	200 mA @ 120 V AC , 120 mA @ 240 V AC	
	32/52/64	NA	
Fan Power Requirements	74/104/147	NA	
	234	20 VA	

Electrical (cont.)

Short Circuit Capabilities

Short Circuit Performance	Ty	pe 1
Device Current Rating	Max Fuse Size and Type	Max Available Fault Rating
32	70 A - RK5	5 kA
32	125 A - K5	5 kA
51	125 A - RK5	5 kA
]	200 A - K5	10 kA
64	125 A - RK5	5 kA
04	200 A - K5	10 kA
74	150 A - RK5	5 kA
[74	250 A - J	10 kA
104	200 A - RK5	5 kA
104	400 A - J	10 kA
1.47	250 A - RK5	10 kA
147	400 A - J	10 kA
234	400 A - RK5	10 kA
234	450 A - K5	10 kA

Auxiliary Contacts (Fault and Aux#1)

,			
	UL/cUL/CSA	IEC	
Rated Operational Voltage	250V AC / 30V DC	250V~ / 30V DC	
Rated Insulation Voltage	250V	250V~	
Rated Impulse Voltage	NA	4kV	
Dielectric Withstand	1500V AC	2000V~	
Operating Frequency	50/6	0 Hz	
Utilization Category	D300	AC-15 / DC	
Type of Control Circuit	Electro-maç	netic Relay	
Number of Contacts			
Type of contacts	Normally Open (N.O.)		
Type of current	AC/DC		
Rated Operational Current (Max.)	0.6 A @ 120 V~ and 0.3 A @ 240V~		
Conventional Thermal Current (Ith)	1 A	mp	
Make/Break VA	432/72		

Mechanical

Resistance to Vibration	Operational	1.0 G Peak, 0.15 mm (0.006 in) displacement
	Non-operational	2.5 G Peak, 0.38 mm (0.015 in) displacement
Resistance to Shock	Operational	15 G
	Non-operational	5.5 G

Environmental

Operating Temperature	050 C (32122 F) Open 040 C (32104 F) Enclosed		
Altitude	2000 m (6560 ft)		
Humidity	595% (non-condensing)		
Pollution Degree	2		

Motor Current Rating Chart

Notes	

Horsepower	60 Hz AC Induction Motor							
	Single Phase				Three Phase			
	115 Volt	230 Volt	200 Volt	230 Volt	380-415 Volt	460 Volt	575 Volt	
1/6	4.4	2.2	~	~		~	~	
1/4	5.8	2.9	~	~		~	~	
1/3	7.2	3.6	~	~		~	~	
1/2	9.8	4.9	2.5	2.2	1.3	1.1	0.9	
3/4	13.8	6.9	3.7	3.2	1.8	1.6	1.3	
1	16.0	8.0	4.8	4.2	2.3	2.1	1.7	
1 1/2	20.0	10.0	6.9	6.0	3.3	3.0	2.4	
2	24.0	12.0	7.8	6.8	4.3	3.4	2.7	
3	34.0	17.0	11.0	9.6	6.1	4.8	3.9	
5	56.0	28.0	17.5	15.2	9.7	7.6	6.1	
7 1/2	80.0	40.0	25.0	22.0	14.0	11.0	9.0	
10	100	50.0	32.0	28.0	18.0	14.0	11.0	
15	135	68.0	48.0	42.0	27.0	21.0	17.0	
20	~	88.0	62.0	54.0	34.0	27.0	22.0	
25	~	110	78.0	68.0	43.0	34.0	27.0	
30	~	136	92.0	80.0	51.0	40.0	32.0	
40	~	176	120	104	66.0	52.0	41.0	
50	~	216	150	130	83.0	65.0	52.0	
60	~	~	177	154	103	77.0	62.0	
75	~	~	221	192	128	96.0	77.0	
100	~	~	285	248	165	124	99.0	
125	~	~	359	312	208	156	125	
150	~	~	414	360	240	180	144	
175	~	~	475	413	275	207	168	
200	~	~	552	480	320	240	192	
250	~	~	692	602	403	302	242	
300	~	~	~	~	482	361	289	
350	~	~	~	~	560	414	336	
400	~	~	~	~	636	477	382	
450	~	~	~	~	711	515	412	
500	~	~	~	~	786	590	472	

The information in this chart was derived from Table 430-148 & 430-150 of the NEC and Table 50.1 of UL standard 508A. The voltages listed are rated motor voltages. The currents listed shall be permitted for system voltage ranges of 110-120, 220-240, 380-415, 440-480 and 550-600 volts.

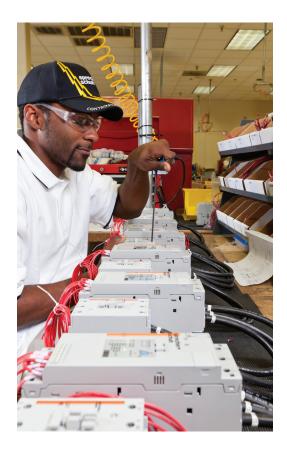
The full-load current values are for motors running at usual speeds and motors with normal torque characteristics. Motors built for especially

low speeds or high torques may have higher full-load currents, and multi-speed motors will have full-load currents varying with speed. In these cases, the nameplate current ratings shall be used.

Caution: The actual motor amps may be higher or lower than the average values listed above. For more reliable motor protection, use the actual motor current as listed on the motor nameplate. Use this table as a guide only

Sprecher + Schuh US Division Headquarters 15910 International Plaza Drive Houston, TX 77032

Customer Service: (877) 721-5913


Fax: (800) 739-7370

Sprecher + Schuh Canadian Division 135 Dundas Street Cambridge, ON N1R 5N9

Customer Service: (905) 475-6543

Fax: (905) 475-0027

www.sprecherschuh.com

Series PCEC Elevator Softstarters Elevator Panel Solution User Manual

MAN-PCEC_v11 03/23 40055-252-01 DIR 40055-252 (Version 05)

Sprecher + Schuh has provided reliable control and protection solutions for its customers since 1903.

Today, Sprecher + Schuh offers a wide range of low-voltage industrial control products, including contactors, a variety of relays, starters, push buttons, switches, terminals and controllers, to name a few. All of our products are crafted with precision and tested rigorously for performance — far exceeding industry standards. Moving forward, we continue along the path of constantly seeking innovative ways to provide solutions for our customers. It is by this philosophy that Sprecher + Schuh has come to be the industrial control manufacturer of choice for many customers around the globe seeking quality, reliability, and a name they can trust.